1. Researchers from Western University have discovered a protein that has the never-before-seen ability to stop DNA damage in its tracks. The finding could provide the foundation for developing everything from vaccines against cancer, to crops that can withstand the increasingly harsh growing conditions brought on by climate change. The researchers found the protein – called DdrC (for DNA Damage Repair Protein C) -- in a fairly common bacterium called Deinococcus radiodurans (D. radiodurans), which has the decidedly uncommon ability to survive conditions that damage DNA – for example, 5,000 to 10,000 times the radiation that would kill a regular human cell. Lead researcher Robert Szabla says Deinococcus also excels in repairing DNA that has already been damaged. “It’s as if you had a player in the NFL who plays every game without a helmet or pads,” says Szabla, a grad student in Western’s Department of Biochemistry. “He’d end up with a concussion and multiple broken bones every single game, but then miraculously make a full recovery overnight in time for practice the next day.” He and his colleagues discovered that DdrC is a key player in this repair process. The research paper is here. (Sources: lightsource.ca, academic.oup.com)
2. A new technology can extract lithium from brines at an estimated cost of under 40% that of today’s dominant extraction method, and at just a fourth of lithium’s current market price. The new technology would also be much more reliable and sustainable in its use of water, chemicals, and land than today’s technology, according to a study published today in Matter by Stanford University researchers. Global demand for lithium has surged in recent years, driven by the rise of electric vehicles and renewable energy storage. The dominant source of lithium extraction today relies on evaporating brines in huge ponds under the sun for a year or more, leaving behind a lithium-rich solution, after which heavy use of potentially toxic chemicals finishes the job. Water with a high concentration of salts, including lithium, occurs naturally in some lakes, hot springs, and aquifers, and as a byproduct of oil and natural gas operations and of seawater desalination. (Sources: news.stanford.edu, sciencedirect.com)
Keep reading with a 7-day free trial
Subscribe to News Items to keep reading this post and get 7 days of free access to the full post archives.